HIV Vaccine Awareness Update

May 16, 2019
Mary Marovich, M.D.
Director, Vaccine Research Program
Presentation Outline

- Mission: Preventative vaccine

- Key HIV Vaccination Trials:
 - 2-pronged Strategy
 - Empiric and rationale design
 - Ongoing efficacy trials

- Passive Antibody efficacy trials (broadly neutralizing Ab)

- Addressing HIV Vaccine Development Challenges
VRP Mission: safe and effective HIV vaccine

VRP: Dedicated and talented team of scientists and administrators who support preclinical, translational, and clinical research portfolios with the goal of ending the HIV epidemic.

What: Promote research programs, vaccine developers, investigators and laboratorians working to discover and test novel vaccine candidates and strategies - regardless of the funding environment.

How: Use science and data-based decision making relying on the peer review system, overseeing iterative processes and using a staged and milestone driven approach.
Preventative Vaccines: Overview
RV144: First to show prevention of HIV infection

First Efficacy Signal (31%) in an HIV vaccine trial

Immune Correlates analysis: non-neutralizing Abs correlate with reduced risk of HIV-1 infection

Vaccine efficacy decreases over time

<table>
<thead>
<tr>
<th>Time (mo)</th>
<th>Cumulative Infections</th>
<th>% HIV-1 infection rate (95% CI)</th>
<th>Cumulative Infections</th>
<th>% HIV-1 infection rate (95% CI)</th>
<th>Vaccine Efficacy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>0.15 (0.07,0.24)</td>
<td>30</td>
<td>0.38 (0.24,0.52)</td>
<td>61</td>
</tr>
<tr>
<td>24</td>
<td>32</td>
<td>0.41 (0.27,0.55)</td>
<td>50</td>
<td>0.64 (0.46,0.82)</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>45</td>
<td>0.58 (0.41,0.75)</td>
<td>65</td>
<td>0.84 (0.63,1.04)</td>
<td>31</td>
</tr>
<tr>
<td>42</td>
<td>51</td>
<td>0.68 (0.49,0.87)</td>
<td>74</td>
<td>0.96 (0.74,1.18)</td>
<td>31</td>
</tr>
</tbody>
</table>
Current NIH HIV Vaccine Strategies: The Way Forward

Empirical

RV144 Thai Trial

Theoretical

Broadly Neutralizing Antibodies

Vaccines to improve potency and durability of non-neutralizing anti-Env V2 Abs

Vaccines that induce bNAbs

Immunophylaxis with bNAbs

HVTN702: Phase 2b/3 Clade C ALVAC + gp120 in MF59

HVTN705: Phase 2b Mosaic Ad26 + gp140

Phase 1/2a: Alternative Viral Vectors and Env Proteins

Phase 1: rENV Immunogens for bNAbs, alternative adjuvants

HVTN703/704: Phase 2b AMP Trials VRC01 mAb

Theoretical

Broadly Neutralizing Antibodies

Empirical

RV144 Thai Trial

Vaccines to improve potency and durability of non-neutralizing anti-Env V2 Abs

Vaccines that induce bNAbs

Immunophylaxis with bNAbs

HVTN702: Phase 2b/3 Clade C ALVAC + gp120 in MF59

HVTN705: Phase 2b Mosaic Ad26 + gp140

Phase 1/2a: Alternative Viral Vectors and Env Proteins

Phase 1: rENV Immunogens for bNAbs, alternative adjuvants

HVTN703/704: Phase 2b AMP Trials VRC01 mAb
Study Schema: HVTN 702

<table>
<thead>
<tr>
<th>N (total 5400)</th>
<th>Primary Vaccine Regimen</th>
<th>Booster</th>
<th>2nd Booster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Month 0</td>
<td>Month 1</td>
<td>Month 3</td>
</tr>
<tr>
<td>2700</td>
<td>ALVAC-HIV (vCP2438)</td>
<td>ALVAC-HIV (vCP2438)</td>
<td>ALVAC-HIV+ Bivalent C gp120/MF59®</td>
</tr>
<tr>
<td>2700</td>
<td>Placebo</td>
<td>Placebo</td>
<td>Placebo</td>
</tr>
</tbody>
</table>

Study Opened: Oct 2016 in South Africa, (n=5,400)

Number Currently enrolled (vaccinated): >5,100

Estimated Enrollment Completion: May 2019
Janssen Collaboration: Preventive HIV “Mosaic” Vaccine for Global Coverage

1. Vectors to elicit both humoral and cellular immune responses
 - Ad26 Mosaic
 - MVA-Mosaic

2. Mosaic inserts for global coverage (Gag-Pol-Env)

3. Trimeric env proteins to boost humoral immunity
 - Clade C gp140
 - Mosaic gp140
Study Schema: HVTN 705
Phase 2b Proof of Concept Trial

- **HVTN705**, opened in sub-Saharan Africa (SSA) Nov 2017:
 - 2450 (94%) enrolled

- Evaluate vaccine efficacy Ad26.Mos4.HIV + clade C gp140 regimen

- Population:
 - Moderate-high risk subjects in Southern Africa
 - Limited to female subjects
Different Mechanisms of Protective Humoral Immunity

Antigen recognition - Neutralization - Binding

Fc-mediated - Complement fixation - FcRn - Fcγ (ADCC, ADCP)

AMP - VRC01 bNAb

HVTN702: ALVAC/gp120
HVTN705: rAd26/gp140

Efficacy could be additive: Possible that both neutralization and Fc-mediated effector functions contribute to protection
Broadly neutralizing Abs (bNAbs)

We know:

- Develop in ~ 20-25% infected pts (humans *can* make them)
- bNAb targets: 5 different vulnerable sites on HIV-1 envelope
- Develop slowly (adults: several years, infants: one year)
- Highly specialized Abs: eg autoreactive, highly mutated, long loop CDRH3
- Prevent infection in NHP SHIV challenge animal model

We DON’T know:

- Do bNAbs protect humans? Currently testing (AMP)
- Can vaccines can elicit bNAbs? May need multiple components
Most effective vaccines induce Neutralizing Antibodies against the virus

- **Hepatitis B**
 - HBsAg

- **Influenza A**
 - Hemagglutinin (HA)
 - e.g., H1, H3

- **HIV-1**
 - gp160

Antibodies bind to viral surface protein
From natural infection: Human repertoire produced broadly neutralizing antibodies

Recognition that bNAb development requires extensive SHM

Recognition of the 5 epitopic targets for bNAbs

From natural infection: Human repertoire produced broadly neutralizing antibodies

Recognition that bNAb development requires extensive SHM

Recognition of the 5 epitopic targets for bNAbs

From natural infection: Human repertoire produced broadly neutralizing antibodies

Recognition that bNAb development requires extensive SHM

Recognition of the 5 epitopic targets for bNAbs

From natural infection: Human repertoire produced broadly neutralizing antibodies

Recognition that bNAb development requires extensive SHM

Recognition of the 5 epitopic targets for bNAbs
AMP Americas Trial: HVTN704
AMP Africa Trial: HVTN703

Phase 2b studies to evaluate the efficacy of VRC01 broadly neutralizing monoclonal antibody in reducing acquisition of HIV-1 infection
VRC01 Human Monoclonal Antibody

- Discovered in an individual who was HIV infected for a long time (>15 years), who maintained virologic control without ART

- Developed by John Mascola and colleagues at the Vaccine Research Center/NIH

- bNAb that blocks CD4 binding

Photo: NIAID/NIH Vaccine Research Center (VRC)
AMP Study Schema

A phase 2b study to evaluate the safety and efficacy of VRC01 broadly neutralizing monoclonal antibody in reducing acquisition of HIV-1 infection

VRC01 Ab
10 or 30 mg/kg IV or placebo every 8 weeks, 10 doses

High Risk Women
N=1900
Sub-Saharan Africa

MSM/TG
N=2700
North and South Americas

Estimate efficacy of prevention of infection in each of two separate cohorts
Study duration: 92 weeks

Study Enrollment Completed in Oct 2018
Fusion Peptide vaccination with Trimer Boost: shows cross-neutralizing antibodies in NHP!

NHP mAb Neutralizes 59% of 208 viral strains: Geo IC$_{50}$ mean = 3.12 µg/ml

Kong, Duan, Sheng, Xu, Acharya, Chen, Cheng, Chuang, et al. (Submitted)
HIV Vaccine bNAb immunogens: Near Clinical Testing (2017-2020)

2017
- Q1: EnvSeq1 4 x gp120 CH505 proteins (HVTN115)

2018
- Q1: EnvSeq2 M5 protein (HVTN-115 Part B)
- Q3: CH505 TF transient protein (HVTN123)
- Q4: EnvSeq2 M5 protein (HVTN-115 Part B)

2019
- Q2: MPER Liposome (HVTN-133)
- Q3: CH505 M5 G485Y (HVTN-TBD)
- Q4: CH505 M5 G485Y (HVTN-TBD)
- Q1: A244 in SLE individuals (HVTN-121)

2020
- Q1: CH505 TF Infant Study (HVTN-115)
- Q1: A244 protein vs. mRNA (HVTN-TBD)

2020
- Q1: eOD-GT8 60mer (IAVI-G001)

2020
- Q1: BG505 SOSIP (IAVI-W001)
- Q1: BG505 SOSIP Adjuvant Comparison Study (HVTN-137)
- Q4: BG505 D5-SOSIP.664 – VRC 4571 (VRC-018)

2020
- Q1: Env Fusion Peptide conjugated to ITTbc (VRC-TBD)
- Q1: HIV Trimer 2 (VRC-TBD)
- Q1: Diverse FP (VRC-TBD)
- Q1: A246 Core gp120 7-mer (HVTN-TBD)

2020
- Q1: Mosaic SOSIP-based trimers (Imperial College – TBD)
- Q1: SOSIP-based trimers (Imperial College-TBD)
- Q1: Consensus M SOSIP native like trimer (ConM) (Imperial College-TBD)
- Q1: Consensus S Linker-based trimer (ConS) (Imperial College-TBD)
Virus-Neutralizing Antibody Co-evolution

Co-Evolution of HIV Transmitted-Founder Virus and Evolving Neutralizing (CD4bs) & Apex & V3-glycan & MPER

“The Arms Race”

Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

Nature 496: 469-476, 2013
Sequential HIV Immunization Strategy

Source: Burton Nature Reviews Immunology 2019
Summary: Efficacy Studies and Timelines

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Trial</th>
<th>Location</th>
<th>Population</th>
<th>N</th>
<th>Results*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALVAC + gp120/MF59</td>
<td>HVTN702</td>
<td>South Africa</td>
<td>Men and Women</td>
<td>5400</td>
<td>June 2022</td>
</tr>
<tr>
<td>Ad26Mosaic + gp140/alum</td>
<td>HVTN705</td>
<td>Sub-Saharan Africa</td>
<td>Women</td>
<td>2600</td>
<td>June 2022</td>
</tr>
<tr>
<td>VRC01 10 mg/kg 30 mg/kg</td>
<td>HVTN703</td>
<td>Sub-Saharan Africa</td>
<td>Women</td>
<td>1900</td>
<td>September 2020</td>
</tr>
<tr>
<td></td>
<td>HVTN704</td>
<td>Americas, Lausanne</td>
<td>Men (MSM & Transgender)</td>
<td>2700</td>
<td>September 2020</td>
</tr>
</tbody>
</table>

*estimated timeline for primary analysis

Watch for early Phase studies to elicit neutralizing Abs
Addressing HIV Vaccine Development Challenges

- Interoperable platform technology
- Identify immune correlates in protective vaccine studies
- Use correlates to advance vaccine candidates
- Prequalify vaccines for Registration/Marketing
- Increase capacity and efficiency of manufacturing
- Incentivize/de-risk Industry

Public-Private Partnerships

Community
Acknowledgements

NIAID/DAIDS Senior Management
Anthony S. Fauci
Carl Dieffenbach

Preclinical Research Development Branch
Jim Bradac (Branch Chief)
Que Dang
Angela Malaspina
Nancy Miller
Jessica Santos
Alan Schultz
Stuart Shapiro
Anjali Singh
Jonathan Warren

Vaccine Translational Research Branch
Michael Pensiero (Branch Chief)
Vijay Mehra
Nandini Sane
Shah Raza
Shyam Rele
Amanda Ulloa
Christopher Hamlin
Maria Chiuchiolo
Sujata Vijn
Jennifer Grossman

VRP- Office of the Director
Kevin Ryan
Barbara Cunningham
Sherolyn Earle
Tina Tong

Vaccine Clinical Research Branch
Dale Hu (Branch Chief)
Philip Renzullo
Mary Allen
Jane Baumblatt
Cesar Boggiano
Maggie Brewinski-Isaacs
Patricia D’Souza
Margarita Gomez
Julia Hutter
Nina Kunwar
James Lane
Pierre Paisible
Laura Polakowski
Edith Swann

Vaccine Trial Volunteers and Community Partners

NIAID funded Networks, Principal Investigators, Labs, Sites and Partners

HVTN: Larry Corey, Linda Gail-Becker, Peter Gilbert, Glenda Gray, Scott Hammer, Jim Kublin, Julie McElrath, and Georgia Tomaras

HPTN: Mike Cohen, Srilatha Edupuganti, Nyaradzo Mgodi

VRC: John Mascola, Julie Ledgerwood, Barney Graham, Rick Koup

Janssen: Maria Pau, Frank Tomaka

Pox Protein Public Private Partnership (P5):